5. Износостойкие твердосппавные детали в машиностроении и приборостроении

Высокие твердость и износостойкость металлокера- мических твердых сплавов уже вскоре после их внед­рения в производство открыли для них многочисленные области применения, при этом не только в качестве режу­щих материалов [5, 22, 48, 92, 117, 142, 143, 284, 307— 327]. Помимо уже упомянутой обширной области при­менения для волочения проволоки и прутков, армиро­вания буров ударного и вращательного бурения в гор­ном деле, а также изготовления сердечников снарядов, существуют многочисленные возможности их примене­ния в машиностроении и приборостроении в производ­стве листового металла и проволоки, в химической и текстильной промышленности, в камнедробилках, в ке­рамической промышленности, в порошковой металлур­гии и во многих других областях (табл. 52). На рис. 60 показаны износостойкие детали из твердых сплавов.

Области применения твердых еппавов в качестве износостойких материалов

Область применения

Отрасль промышленности

Волочильное производст­во

Прокатка и обработка листового металла

Машиностроение и при­боростроение

Производство измери­тельных инструментов

Волоки для круглого и профильного материала, матрицы и стержни для про­тягивания труб, волочильные плашки и фильеры, губки, захваты, правильные валки, волочильные клещи, валки про – волочно-прокатных станов, щеки моло­тов, штампы для холодной высадки, от­резные ножи и патроны

Режущие инструменты, штамповочные инструменты, штампы для глубокой вы­тяжки, чеканные штампы, ножницы для резки металла, кромкозагибочные валки, фальцовочные валки, гибочные планки, прецизионные валки для холодной про­катки, охлаждающие планки для закал­ки бритвенных лезвий.

Центры токарных станков, зажимные кулачки, кулачки сверлильных патронов, направляющие втулки, прижимные роли­ки па револьверных станках, прецизион­ные подшипники на револьверных и шли­фовальных станках, криволинейные на­правляющие, сверлильные кондукторы, направляющие с резьбой, опорные части, упорные болты, упоры, упорные планки, защелки, ножи бесцентровых шлифоваль­ных станков, диски и ролики для нака­тывания, направляющие для ленточных пил, приспособления для высадки зубьев в полотнах, опорные призмы для весов, тисочные губки, подшипники тяжелых двигателей, сопла пескоструйных аппа­ратов, лопасти пескометов, сопла и вен­тили клапанов для распылителей, впуск­ные сопла и распылители для турбин, форсунки для дизелей, изложницы для литья под давлением, контакты для те­леграфных аппаратов.

Шарики Бринеля, пирамиды Виккерса, толщиномеры, калибры, контактные оп­равки, измерительные колесики для пла­ниметров

Отрасль промышленности

Текстильная промышлен­ность

Химическая промышлен­ность

Горное дело

Керамическая промыш­ленность

Порошковая металлургия

Разное

Направляющие для пряжи из нату­ральных и искусственных волокон, на­правляющие части прядильных машин для нейлона и искусственного шелка

Клапаны для высоких давлений, кор­пуса, кольца и седла клапанов для кор­родирующих жидкостей и мокрого шла­ма, выгружатели и скребки для центри­фуг, сопла для высоких давлений, сопла для инсектицидов, сопла для обработки пищевых продуктов

Буровые коронки, инструменты для’ ударного бурения, буры типа «рыбий хвост», размольные шары, долота для бурения по камню, молоты для щебня, ролики для резки камня

Матрицы для прессования керамиче­ских масс, прессформы для кирпичей, матрицы для ленточных прессов, стекло – прядильные волоки, захваты стекла

Прессформы и пуансоны для металли­ческих порошков, калибровые втулки и стержни, мельницы с твердосплавной фу­теровкой

Продолжение табл. 52

Область применения

Подковки, пластинки под каблуки, са­пожные гвозди, проволоки для лесок, подшипники для навивочных барабанов удилищ, направляющие кольца буксиро­вочных тросов самолетов, гравироваль­ные иглы, наконечники для авторучек, граммофонные иглы

Из существующих марок твердых сплавов для из­готовления изнашиваемых деталей машин или для их армирования в первую очередь применяют сплавы ти­па WC—Со с различным содержанием кобальта, иног­да с незначительными присадками TaC, TiC, NbC, VC и т. д. Для изнашиваемых деталей, работающих без ударной нагрузки, подходят твердые сплавы с 6—9% кобальта и даже менее вязкие безвольфрамовые твер­дые сплавы. Для бесстружковой обработки при незна-

Чительных ударных нагрузках применяют сплавы с 9— 12% Со, а при средней ударной нагрузке — с 15— 20% Со. Введение кобальта в количестве 25% и более позволяет выдержать очень высокую ударную нагрузку. С увеличением содержания кобальта в любом случае твердость, а в известной мере и износостойкость сни­жаются. Необходимо, следовательно, во всех случаях когда действует высокая ударная нагрузка, выбирать

Рис. 60. Износостойкие детали из твердых сплавов

Такие марки твердых сплавов, которые при оптималь­ной твердости н износостойкости обладают достаточной вязкостью, чтобы выдерживать ударные нагрузки без повреждения или поломки. Ниже дается более деталь­ный обзор областей использования твердых сплавов.

Наряду с использованием твердых сплавов для во­лок и волочильных очков их применяют и в других об­ластях, связанных с производством и обработкой про­волоки. При ковке спеченных прутков из вольфрама, молибдена и других металлов в ротационных ковочных машинах с применением твердосплавных ковочных пла­шек важную роль играет исключительно высокая твер­дость сплавов в горячем состоянии, так как темпера­тура ковки лежит в интервале 1000—1600° С. При этой температуре обычные высоколегированные стали очень сильно изнашиваются. У крупногабаритных плашек из твердого сплава изготовляют только нагружаемые де­тали. Соответствующую, предварительно изготовленную твердосплавную вставку напаивают твердым припоем. Небольшие плашки являются цельнотвердосплавными [320, 328—330]. Ударный характер нагрузки требует применения вязких сплавов с 15, 20 или 25% кобальта. Те качества твердых сплавов, которые требуются для обработки при высокой температуре, имеют еще боль­шее значение при холодной прокатке проволоки, игл и профилей. Твердосплавные плашки превосходят в 30— 60 раз по стойкости плашки из лучшей инструменталь­ной стали. При использовании твердосплавного ковоч­ного инструмента значительно снижаются расходы на переточку.

Роль твердосплавных инструментов все более воз­растает в производстве заклепок, винтов и гвоздей [92, 117, 118, 284, 323, 324, 327, 331—336] (рис. 61). В то время как стальные штампы холодной высадки головок заклепок, например, при диаметре 5 мм раздаются уже после высадки 30—50 тыс. заклепок, в штампах, арми­рованных твердыми сплавами, при том же диаметре не обнаруживается сколько-нибудь заметной раздачи да­же после высадки 3 млн. заклепок [150, 319, 337]. В свя­зи с высокой ударной нагрузкой здесь используют спла­вы с 15, 20 или 25% кобальта. Помимо высадочных штампов, твердыми сплавами армируют также отрез­ные ножи и отрезные патроны. Эти инструменты отре­зают в 30 раз больше заготовок, чем стальные инстру­менты [317].

Армированные твердыми сплавами инструменты для холодной гибки позволяют экономично изготовлять ко­лена труб из аустенитных сталей; эти инструменты оп­равдали себя также при изготовлении цепей [327].

Интересной областью применения твердых сплавов являются инструменты листопрокатных и проволочных цехов. В последние годы в ФРГ и в особенности в США широко стали применять прецизионные валки для про­катки алюминия, благородных металлов и биметалли­ческих лент. Высокий модуль упругости (т. е. незначи­тельная стрела прогиба) и незначительный износ вал­ков позволяют строго выдерживать допуск у холодно­катаных листов и обеспечивают особо длительный срок службы инструмента [307, 312, 338—345]. Наряду с вы­сокой износостойкостью и возможностью соблюдения точных размеров существенным является также то, что хорошее качество отополированной поверхности твердо­сплавных валков передается прокатываемому материа­лу. Прокатываемый материал прилипает к твердосплав­ным валкам меньше, чем к стальным. Стойкость твердо-

Рис. 61. Армированные твердым сплавом инструменты для холод­ной высадки

Сплавных валков (в большинстве случаев применяют совершенно беспористый сплав с 11% Со) превышает стойкость (срок службы) стальных валков примерно в 50—100 раз.

Малогабаритные валки изготовляют в настоящее время цельнотвердосплавными. При изготовлении же валков больших размеров стальной сердечник покрыва­ют (армируют) твердосплавной оболочкой [21, 317, 320, 346]. В США такие валки имеют диаметр около 250 мм и длину около 1000 мм при общей массе не свыше 500 кг [342].

Армирование жаропрочными твердыми сплавами на основе карбида титана проводок мелкосортных станов,

На которых прокатывают стали с высокой скоростью при температуре 760—980° С, позволяет увеличить срок службы инструмента примерно в 45 раз (323). Твердые сплавы как износостойкие материалы могут найти ши­рокое применение в качестве инструментов (штампов) для глубокой вытяжки, прессования и тиснения гильз, чашек, тюбиков, фасонных изделий и т. д. Во время войны в особенно широком масштабе применяли арми­рованные твердыми сплавами вытяжные штампы для изготовления боеприпасов [308, 314, 347, 350]. Эти штам­пы могут быть использованы в настоящее время в на­родном хозяйстве для массового изготовления деталей [22, 92, 117, 351—354]. Длительное сохранение размеров твердосплавных вставок позволяет изготовлять без пе­реточки, например, патроны и гильзы снарядов в не­сравненно больших количествах, чем при работе со стальными инструментами. Высокое качество поверх­ности твердосплавной вставки и ее незначительная склонность к свариванию с вытягиваемым материалом дают возможность также производить глубокую вытяж­ку трудно вытягиваемых материалов без промежуточ-‘ ных отжигов. В отношении размеров подобных инстру­ментов в настоящее время вряд ли существует верхний предел; твердосплавные вставки можно изготовлять диаметром до 350 мм [346, 355].

Аналогами штампов для глубокой вытяжки и прес­сования являются штампы для чеканки, а также калиб­ровочные матрицы и пуансоны для наружной и внут­ренней калибровки деталей, изготовляемых со строгими допусками. Преимуществом твердых сплавов здесь так­же является очень хорошее качество поверхности и дли­тельное сохранение размеров твердосплавной вставки, а следовательно, и изготовляемой детали [317, 356].

Твердосплавные инструменты все чаще применяют для резки и штамповки листового металла. Примене­ние вырубных обрезных штампов с твердосплавными вставками особенно рентабельно при массовом выпуске изделий (например, бритвенные лезвия, детали часово­го механизма) или при штамповке листовых металлов, сильно изнашивающих инструмент, например трансфор­маторного железа (рис. 62, 63) [117, 122, 314, 315, 317, 319, 323, 324, 340, 351, 354, 356—373].

Изготовление вырубных отрезных штампов с твердо-

Рис. 62. Твердосплавные части штампа для вырубки деталей из листовой стали для статорон н роторов элек­тродвигателей

Рис. 63. Армированный твердым сплавом штамп для вырубки деталей из листовой стали для статоров и ро­торов электродвигателей

Сплавными вставками требует значительного опыта в инструментальном деле [374—383]. Вставки часто изго­товляют из отдельных сегментов, каждый из которых подвергают окончательной обработке (доводке) ал­мазно-металлическими кругами на профильных шли­фовальных станках, после чего производят посадку сег­ментов в стальной корпус. Доводка готового инструмен­та очень затруднительна. Вырубные пуансоны также армируют твердыми сплавами. Крепление твердого сплава к пуансону производят напайкой или с помощью специальных винтовых зажимов [384]. Небольшие пуан­соны изготовляют цельнотвердосплавными.

Для того чтобы избежать поломки режущей кромки, в большинстве случаев применяют твердый сплав WC— Со с 20% Со. Несмотря на то что твердосплавный вы­рубной штамп в три-пять раз дороже стального, его применение обеспечивает значительную экономию, так как его стойкость (срок службы) в зависимости от штампуемого материала в 20—60 раз превышает стой­кость стального штампа. Нередко между двумя пере­точками штампуют свыше 1 млн. изделий [150, 385, 386].

Для износостойкости направляющих штампов, а так­же желобков, по которым непрерывно подается лента, их также армируют твердыми сплавами [387].

В машиностроении и приборостроении твердые спла­вы используют очень широко [143, 284, 307, 309, 310, 314, 317, 318, 320, 323]. Детали, которые раньше изготовляли из стали, в нагружаемых местах обязательно армиру­ют твердыми сплавами чаще всего типа WC—Со. Ар­мирование производят с помощью пайки мягким или твердым припоем. Облицованные поверхности шлифуют кругами из карбида кремния или же алмазно-металли­ческими дисками и доводят на притирочных станках.

Все современные высокопроизводительные токарные станки оборудуют токарными центрами, армированны­ми твердыми сплавами. Твердым сплавом армируют также зажимные кулачки и люнеты. У бесцентровых шлифовальных станков очень быстро изнашиваются стальные направляющие полосы, что заметно снижает точность шлифования. Применяя армированные твер­дыми сплавами планки, полосы и линейки, достигают в наиболее благоприятных случаях 300-кратного увели­чения стойкости (срок службы) по сравнению со сталь­ными направляющими при одинаковой точности шлифо­вания [311, 318]. В станкостроении, в особенности у вся­кого рода токарных автоматов, многочисленные детали, ранее изготовлявшиеся из стали (упоры, упорные болты, направляющие втулки, криволинейные направляю­щие, сверлильные кондукторы, защелки механизма пода­чи, щупы, прижимные ролики и т. д.), в настоящее вре­мя армируют твердыми сплавами. Твердосплавные под­шипники для прецизионных шлифовальных станков, сильно нагружаемых двигателей и т. д. очень мало из­нашиваются и хорошо работают даже при повышенной температуре без смазки [310, 388] или же со щелочной смазкой [389, 390]. В связи с этим следует упомянуть о работах по теоретическому [391, 392] и практическому [393] изучению процессов трения у твердосплавных под­шипников. Для подобных видов применения изучали также комбинации карбидов, боридов, силицидов и графита [61—63, 65, 394].

В часовой промышленности, являющейся одним из основных потребителей фасонных твердосплавных штам – повых инструментов, твердосплавные роликовые шай­бы обеспечивают особенно высокое качество поверхно­сти ряда деталей. Для внутренней калибровки и поли­ровки давлением применяют твердосплавные шарики [116, 395—397].

Особое значение имеют твердые сплавы в производ­стве измерительных приборов. Высококачественные мик­рометры, предельные калибровые пробки, толщиноме­ры, резьбовые калибры, эталонные пластинки для из­мерения твердости и другие инструменты массового контроля с успехом армируют твердыми сплавами [143, 398—400]. Это обеспечивает не только значительную экономию средств благодаря удлинению срока службы измерительного инструмента, но и более точный и на­дежный технический контроль.

Твердосплавные шарики и пирамиды приборов для испытания на твердость [323, 401—403] в отличие от стальных шариков почти не деформируются даже при испытании материалов твердостью 400—800 HB. Из­мерение твердости, с их помощью оказывается значи­тельно более точным, и в указанном интервале получа­ются значительно большие величины твердости, чем при применении стальных шариков [398].

Другой важной областью применения твердых спла­вов являются сопла всех видов [143]. Как известно, из­нос сопел, в особенности при пескоструйной обработке, очень велик. Сопла пескоструйных аппаратов с твердо­сплавными вкладышами характеризуются значительно более долгим сроком службы, чем применяющиеся до настоящего времени сопла из отбеленного чугуна. В то время как сопла из отбеленного чугуна оказываются сильно изношенными уже после 3—4 ч работы, твердо­сплавные сопла оказываются почти неизменившимися в размерах после 1000 ч эксплуатации, а в более благо­приятных случаях даже после 1600 ч [319, 404, 405]. Бла­годаря высокой стойкости твердосплавных сопел и, сле­довательно, сохранению размеров отверстия устраняется избыточный расход сжатого воздуха и электроэнер­гии, а также падение давления. Отпадает, кроме того, необходимость в частой смене сопел. Более высокая стоимость твердосплавных сопел по сравнению с сопла­ми из отбеленного чугуна компенсируется их значитель­но более долгим сроком службы. Кроме того, достига­ется большая экономия сжатого воздуха при эксплу­атации.

Как правило, из твердого сплава изготовляют толь­ко внутреннюю часть пескоструйного сопла. Для защи­ты от толчков твердосплавный вкладыш впаивают или вклеивают в стальную оболочку.

177

Наряду с пескоструйными соплами твердыми спла­вами армируют и другие виды сопел, у которых возни­кают аналогичные явления износа: сопла воздуходувок; разбрызгивающие сопла; распылительные сопла; сопла для впуска и выхлопа газов в дизелях; сопла на маши­нах для обмазки сварочных электродов [284]; сопла для автоматов, в которых прессуются органические массы, наполненные окислами; разбрызгивающие сопла для керамических масс [406]; стеклопрядильные сопла и мундштуки прессов для производства прутков из лег­ких и цветных металлов [307, 314, 327, 407]. С помощью твердосплавных мундштуков удалось, например, изгото­вить прутки диаметром 10 мм из железного, никелево­го и кобальтового порошков. Прессование производи­лось под давлением 18 т/см2 и при температуре около 900° С [508]. При таком режиме прессования матрица из закаленной инструментальной стали начинает «течь».

12—699

В связи с этим следует упомянуть об известных экс­периментах Бриджмена [306], связанных с применением высокого давления. Для этих экспериментов использо­вали твердосплавные вкладыши, выдерживавшие дав­ление до 154 тIсм2. Подобные вкладыши применяют в настоящее время при синтезе алмазов [409—412].

Твердые сплавы благодаря высокой коррозионной стойкости [22, 307, 370, 413] нашли применение в хими­ческой промышленности в качестве конструкционных материалов для аппаратов большой емкости. Сюда от­носятся детали клапанов, уплотнительные конусы и кольца, сопла для гидрогенизации в условиях высоких давлений. Твердые сплавы, кроме того, достаточно ус­тойчивы к воздействию быстрорежущих горячих раство­ров едких щелочей, попадающих в аппаратуру вместе с отходами [414]. Все возрастающий интерес для хими­ческой промышленности представляет, по-видимому, ар­мирование твердыми сплавами выгружателей центри­фуг, а также облицовка ими различных сопел.

Твердые сплавы на основе карбида хрома с никеле­вой связкой характеризуются не только высокой изно­состойкостью, но и значительными коррозионной стой­костью н окалиностойкостью [48, 415—417]. По этой причине их используют для таких деталей, которые, ра­ботая на износ, одновременно подвергаются коррозион­ному воздействию (гнезда и шары клапанов для неф­тяных насосов и насосов в химической промышленности, нитеводы, изнашиваемые детали всйс видов в хими­ческой, фармацевтической и пищевой промышленности и т. д.). Жаропрочные и окалиностойкие твердые спла­вы на основе карбида хрома рекомендуется применять для горячего мундштучного прессования [334]. Для на­пайки этих сплавов на стальную державку необходимо применять серебряный припой и в особенности флюсы и раскислители [418].

В отдельных случаях целесообразно выяснить воп­рос о применении довольно прочных сплавов на основе WC с платиновой или никельхромовой связками.

В текстильной промышленности находят все более широкое применение направляющие кольца для нитей из натурального или искусственного шелка, изготовляе­мые из твердых сплавов методом мундштучного прес­сования [313, 419]. Они характеризуются более длитель-

Ным сроком службы (в 100 раз), чем применявшиеся до сих пор ушки. Твердосплавные направляющие кольца различных размеров применяются в настоящее время не только в текстильной промышленности, но и при из­готовлении проволочной сетки и тончайшей стальной стружки (стальной шерсти), при перемотке проволоки, намотке катушек [420], при изготовлении удилищ и на­правляющих буксировочных тросов самолетов [313].

В горном деле, кроме случаев применения твердых сплавов для буров вращательного и ударного бурения, используют тяжелые твердосплавные шары диаметром 80—120 мм для грубого размола минералов и руды [5]. Однако для этой цели требуется значительное количе­ство твердого сплава. Замена обычных твердых спла­вов типа WC—Со твердыми сплавами MoC—TiC откро­ет широкие возможности для применения безвольфра­мовых сплавов, которые в настоящее время применяют в тех случаях, когда деталь подвергается только изно­су в результате трения.

Армированные твердосплавными пластинками удар­ные элементы в коксодробилках и других измельчитель – ных машинах, например в пищевой и текстильной про­мышленности, изнашиваются во много раз меньше, чем аналогичные ударные элементы из стали [421].

В керамической промышленности, так же как и в по­рошковой металлургии, требуются прессформы для мас­сового прессования изделий из абразивных материалов. Армированные твердыми сплавами прессформы для из­готовления кирпичей обладают значительно большим сроком службы, чем стальные матрицы. В то время как в стальной матрице можно спрессовать только 8— 10 тыс. кирпичей, в твердосплавной удается спрессовать свыше 40 тыс. кирпичей, в результате чего достигается значительная экономия материала,[318, 340].

Срок службы твердосплавного прессового инстру­мента, применяемого для изготовления шлифовальных дисков на основе карбида кремния или корунда, в де­сять раз превышает срок службы стального инструмен­та; спресованные диски при этом обладают гораздо бо­лее точными размерами и легче выталкиваются из прес – форм [318].

179

Применяемые в керамической промышленности для изготовления фасонных изделий, подвергающихся из-

12* носу, различные шаблоны (грунтовочные, плющильные, резальные и т. д.) также целесообразно армировать твердыми сплавами [406, 422]. В то время как стальной плющильный шаблон для изготовления фарфоровых та­релок срабатывается уже после 8—12-ч применения, шаблон, армированный твердым сплавом, можно ис­пользовать в течение 6—12 месяцев.

В порошковой металлургии, так же как и в керами­ческой промышленности, можно широко использовать твердые сплавы в качестве износостойких материалов. При мокром размоле твердосплавных смесей особенно хорошо служат армированные твердым сплавом мель­ницы с твердосплавными шарами[26].

Прессование металлических порошков в фасонные изделия ведет к сильному износу прессформ. В этой об­ласти хорошие результаты получены при использовании матриц и пуансонов, армированных твердыми сплавами [423—427]. При прессовании, например, спеченных же­лезных подшипников под давлением 2—3 т/см2 стой­кость таких прессформ превышает в 100—200 раз стой­кость прессформ из инструментальной стали и в 50— 100 раз — стойкость хромированных прессформ [5, 428, 429]. При давлении прессования 6—12 т/см2 преимуще­ство металлокерамического твердого сплава с его вы­сокой стойкостью к привариванию еще более заметно. Холодное или горячее приваривание металлического порошка к стенкам матрицы, ведущее к преждевремен­ному износу стальной матрицы, у твердых сплавов очень невелико.

На рис. 64 показана футерованная твердым сплавом матрица для прессования металлических порошков. Твердосплавная футеровка (темная) состоит из десяти сегментов, каждый из которых в отдельности шлифуют алмазно-металлическим диском и затем производят его посадку в стальную обойму с помощью промежуточного кольца (светлое) [430]. Так, крупные матрицы, которые можно подвергать последующему шлифованию, могут быть изготовлены цельнотвердосплавными путем горя­чего прессования [431].

Если суммировать все преимущества и возможные недостатки твердого сплава, как износостойкого мате­риала, применяемого в машиностроении и в приборо­строении, то выявляется преобладание преимуществ твердосплавных инструментов по сравнению с до сих пор применявшимися стальными. Твердосплавные ин­струменты в большинстве случаев в 3—5 раз дороже стальных и являются относительно более хрупкими. При неправильном обращении с твердосплавным инстру­ментом или неудачном выборе марки металлокерамиче – ского твердого сплава может произойти повреждение или даже разрушение до­рогостоящего инструмен­та. Однако первоначаль­ные высокие затраты быстро перекрываются высокой производитель­ностью твердосплавного инструмента, в особенно­сти при обслуживании высококвалифициров а н – ным рабочим персоналом [432]. Себестоимость из­готовления изделий сни­жается в результате сок­ращения времени на по­бочные операции и почти полного устранения бра­ка. Наряду со снижением себестоимости большое зна­чение имеет улучшение использования станков, качества изделий и т. д. Таким образом, применение твердых сплавов в качестве износостойких материалов оправды­вается не только с чисто производственной, но и с на­роднохозяйственной точки зрения. Необходимо отме­тить, что переход от применявшихся до сих пор сталь­ных инструментов к твердосплавным требует тесного сотрудничества между потребителями и производителя­ми. В ряде случаев необходимо менять конструкцию из­готовляемой детали в соответствии со свойством твер­дого сплава.

Твердосплавные покрытия для изнашиваемых деталей

Рис. 64. Прсссформа для прессо­вания спеченных магнитов, футе­рованная металлокерамическим твердым сплавом

Ранее упоминалось о применении литого карбида вольфрама для наплавки бурового инструмента. В пос – лёдние годы были разработаны методы нанесения изно­состойких покрытий и металлоподобиых твердых мате­риалов, в особенности из карбидов и боридов[27], на рабо­тающие на износ малогабаритные детали всевозмож­ных приборов путем напыления. Уже Шоои [433] дока­зал возможность напыления порошка карбида вольфра­ма. Методом так называемого «газопламенного напыле­ния», разработанным фирмой Air Products Company, с помощью пистолета напыляют тонкий слой карбида вольфрама с 8% кобальта [48, 434—443]. Масса смеси WC—Со при этом не плавится, а напыляется на поверх­ность изделия при температуре выше точки плавлепия кобальта; при этом ценный карбид вольфрама не раз­лагается. В результате получается довольно плотное малопористое покрытие со структурой металлокерами – ческого твердого сплава. Покрытия, содержащие вслед­ствие некоторой незначительной декарбидизации ri-фа – зу, обладают такой же высокой износостойкостью, как и компактные твердые сплавы, и лучшей износостойко­стью, чем обычные покрытия из наплавочных твердых сплавов или же покрытия, полученные хромированием. В качестве примеров применения этого, к сожалению, дорогого метода можно назвать винтовые калибры, ка­либры-пробки, сердечники для металлокерамических инструментов поршней и гнезд клапанов, ударные при­способления в дробильных машинах, ножницы, матри­цы, ролики станков для правки проволоки, уплотните­ли компрессоров и т. д.

Более экономичным является процесс так называе­мого «плазменного напыления», заключающийся в том, что в атмосфере защитного газа и при высокой темпе­ратуре дуговой плазмы наносят тонкие покрытия твер­дых материалов, пластмасс и других металлоподобиых или окисиых материалов [444, 445].

Методом электроэрозии можно не только обрабаты­вать твердые сплавы, но и при соответствующей схеме включения наносить покрытие из твердых сплавов, на­пример, на сталь. В Советском Союзе разработан метод электроэрозионного нанесения покрытий из твердых сплавов типа WC—Со* и WC—TiC—Со*, позволяющий увеличить в 2—4 раза срок службы инструментов из обычной инструментальной и быстрорежущей стали [446—455]. Этот метод оправдывает себя, однако, лишь в особых случаях.

Существует также группа наплавочных твердых сплавов на основе боридов, в частности боридов хрома [456]. В качестве примера можно назвать известные давно наплавочные твердые сплавы борид хрома — ни­кель — кремний типа «Колмоной» [290, 298, 457—469].