1. Гомогенные стали | Металлолом

К этой группе относятся главным образом низкоуглеродис­тые хромоникелевые стали, дополнительно легированные элементами, упрочняющими у-твердый раствор. Их жаро­прочность обеспечивается в основном растворенными в твер­дом растворе легирующими элементами. Термин «гомоген­ные стали» следует понимать условно, так как в структуре этих сталей обычно присутствует некоторое количество кар­бидов и карбонитридов титана или ниобия.

Гомогенные аустенитные стали используются преиму­щественно в энергомашиностроении для изготовления труб паронагревателей и паропроводов, арматуры установок сверхвысоких параметров и рассчитаны на длительную (до IO5 ч) службу при 650—700°С.

При легировании этих сталей стремятся получить мак­симально стабильную аустенитную структуру, избежать, или замедлить выделение вторых фаз (карбиды, карбонит – риды, фазы Лавеса, а-фазы и др.), что позволяет иметь не­обходимый уровень длительной прочности и пластичности в течение всего ресурса эксплуатации. Важно для этих ста­лей обеспечить также высокие технологические свойства, такие как способность к горячей пластической деформа­ции, прошиваемость при изготовлении цельнотянутых труб, свариваемость и др. Эти цели достигаются повышен­ным содержанием никеля (отношение Ni/Cr>l), что при­дает стали глубоко стабильную аустенитную структуру.

OOiOOO —-а- сч оо

I, . о о

M I 22 г:

О о со сч

1 I, OO CD К 1 1 1 (М —

ООО

IOtDlO

-а-СО —

OOiO CS сч – а – (М —,

ООЙООЙ ою? ююй

CDCO CD TTcn

8 ю S S ю

OtDKKS

888 CD CD OO

888

CDSOO

Iliili

I I

G60—16 790

800—16

740—16 780—25

СО

IO

T

I

I

• I

Сч

—’

02

CD

I

T

I

«•с*

—*

О_

О»

О»

ХЭ стГ— 9 I

S-IIlJ

~ к сч – I О

Ttl

V/

S1 с о л >

З s^S

О vO vOtfS _ •»» в\ О4» LiJ

I

О

СО

6 о.

00 I

I

CD

I

CD

I ю

Ю –

I

-СО

I

•—I —,

-с*

*—

—1

«jjI

«jI

О»

I

О»

I

I

I

00

СО,

CO1

О»

О»

OfD

00,—, Ii

N – Я5

CO.^-

Си

Со {-

О

CN –

O

S

CN ©

U.

X Ж

SS

О Л

4T w

И о

А

2

S-

S

Ю со X

Я

Оо о

О.

H

H

CQ

CN

•*

10, что обеспечива­ет в исходном состоянии присутствие карбидов NbC, TiC и карбонитридов Nb, Ti (С, N), которые препятствуют обра­зованию при эксплуатации карбидных фаз типа Ме23Сб. Повышенная жаропрочность таких сталей объясняется вы­сокой легированностью у-твердого раствора такими элемен­тами, как вольфрам (до 2—3%), молибден (до 2,5%). На­личие стабильных карбонитридных фаз и высоколегирован­ного аустенита обусловливает высокие температуры рекристаллизации сталей этого типа. Так, для стали 1Х14Н18В2БР1 температура начала рекристаллизации (при деформации порядка 20%) лежит при 900°С, а кон­ца—при 1075°С.

Многими исследователями также отмечается положительное влия­ние бора и редкоземельных металлов (р. з. м.) на жаропрочность ста­лей этого типа. Бор, церий и другие редкоземельные элементы являют­ся сильными раскнслнтелямн, поэтому в нх присутствии уменьшается содержание газов н неметаллических включений в сталях, что повышает нх качество. Влияние малых добавок р. з. м. и бора на сопротивление ползучести также связывают с их горофнльностью, т. е. способностью адсорбироваться по границам зерен (В. И. Архаров), что затрудняет зернограннчную диффузию и упрочняет границы. Кроме то­го, бор образует в сталях сложные бориды типа Afe3B2 н Ale2B (напри­мер, (Cr, W, №)гВ), которые обладают высокими температурами плав­ления (например, для Cr2B температура плавления 1850 0C). Важно от­метить, что зависимость длительной прочности от содержания бора имеет экстремальный характер (см. рнс. 181). По-видимому это свя­зано с тем, что при высоком содержании бора (>0,3 %) в большом количестве образуются крупные борнды, которые обедняют твердый раствор ниобием, вольфрамом, хромом и другими элементами. Кроме то­го, бор обладает увеличенной склонностью к лнквацнн и образованию боридных эвтектнк, а в сталях, подвергнутых прокатке, способствует образованию строчечной структуры, что отрицательно сказывается на нх пластических н жаропрочных свойствах.

Таким образом, мнкролегированне аустеннтных сталей бором и р. з. м. оказывает положительное влияние на жаропрочность н пластич­ность как вследствие рафинирующего действия прн выплавке, так «и упрочнения границ зерен благодаря их горофильности.

В процессе длительной работы после 1—2-IO5 ч в этих сталях наблюдали выделения вторичных фаз (например, фазы Лавеса типа Fe2Mo, Fe2W), коагуляцию карбидных фаз и в некоторых сталях выделения в небольших коли­чествах (1—2%) интерметаллндов типа NiaTi. Эти измене­ния протекают очень медленно и незначительно влияют на пластичность и жаропрочность сталей.

Стали этого типа имеют высокую релаксационную стой­кость при длительной эксплуатации и их используют для изготовления крепежных деталей. Важное значение в обе­спечении высокого уровня жаропрочности аустенитные сталей этого типа имеет величина зерна: при испытаниях сталей выше 600 0C длительная прочность и сопротивление ползучести у крупнозернистых сталей выше, чем у мелкозер­нистых (рис. 188), при этом чем выше температура испы­таний, тем больше выигрыш в длительной прочности

8-7 Orf 4 3 2 Размер зерна, баллы

Рис. 188. Влияние размера зерна на скорость ползучести t>n;

,30 МПа, 800″С 60 МПа, 7О0°С

Юомпа, боо°с

9-Ю 8-7 7-В 4-5 3-2 Размер зерна, баллы

А —стали 10X18H12T (И. Р. Кря – нии); б —стали 10X14H14B2M (Е. Морлэ, М. Маркович, А. Гор – бодей)

У крупнозернистых сталей. Отметим, что одновременно сни­жается пластичность сталей.

Термическая обработка аустенитных гомогенных сталей состоит из закалки (аустенитизации) от высоких темпера­тур (1050—1200 °С) или аустенитизации и стабилизирую­щего отпуска (700—750 °С) и преследует цель получить бо­лее однородный у-твердый раствор, заданную величину зер­на (балл 3—6) и стабильную структуру, а также снять на­пряжения, которые могут возникнуть в процессе изготов­ления деталей.

Следует отметить, что улучшение служебных характе­ристик и удешевление сталей этого типа обычно связывают со следующими направлениями исследований: оптимизация состава сталей, в частности частичная замена никеля мар­ганцем и азотом, использование сталей в наклепанном со­стоянии (холодная деформация или термомеханическая обработка), особенно при рабочих температурах, более низких, чем температура рекристаллизации; более широ­кое использование микролегирования сталей бором, р. з. м.; усовершенствование технологии выплавки, обработки дав­лением и режима термической обработки.

2. Стали с карбидным упрочнением

Стали с карбидным упрочнением предназначены для рабо­ты при температурах 650—750 °С и довольно высоких уров­нях напряжений. Их используют для изготовления ответст­венных деталей энергомашиностроения (диски и лопатки турбин, крепежные детали и др.).

Основу сталей с карбидным упрочнением составляют Cr—Ni или Cr—Ni—Mn аустенит, содержащий 0,25—0,5% углерода. v

Марганец, как и никель, расширяет у-область в сплавах на основе железа и в многокомпонентных системах, кото­рыми являются жаропрочные аустенитные стали. Он так­же выступает в качестве аналога никеля. Это позволяет частично заменить никель менее дефицитным марганцем, причем установлено, что присутствие марганца способству­ет некоторому повышению жаропрочности сталей. Однако стали с полной заменой никеля марганцем, т. е. на основе Cr—Mn-аустенита, не нашли широкого применения в ка­честве жаропрочных материалов в связи с их недостаточ­ной жаростойкостью и низкой температурой плавления, так как приходится снижать содержание хрома в сталях для обеспечения аустенитной структуры.

Карбидообразующие элементы V, Nb, W, Mo связывают часть углерода в специальные карбиды, а также упрочня­ют аустенитную матрицу.

Упрочняющими карбидными фазами в аустенитных ста­лях в основном являются карбиды ванадия и ниобия (VC, NbC), а также карбиды хрома (типа Me23C6 и Me7C3). По­следние обычно растворяют в себе другие элементы (Fe, W, Mo и др.), поэтому состав этих карбидов изменяется в зависимости от легирования стали и режима термической обработки.

Карбиды ванадия выделяются при старении в высоко­дисперсном состоянии и обеспечивают значительную долю упрочнения этих сталей.

Специальные карбиды типа MeС в процессах старения практически не участвуют, так как имеют высокие темпе­ратуры растворения при аустенитизации, карбиды и карбо – нитриды ниобия начинают растворяться только после на­грева выше 1250°С, а в основном присутствуют в сталях в виде первичных выделений. Положительная роль этих фаз заключается в том, что они препятствуют росту аустенит­ного зерна при нагреве, и, в частности, образованию разно – зернистости.

Уровень жаропрочности и термическая стабильность сталей данного класса зависят от температуры старения. При низких температурах (500—600°С) выделение карбид­ных фаз протекает медленно, образуются высокодисперс­ные частицы, прочностные свой­ства при изотермической вы­держке непрерывно возраста­ют. С повышением температу­ры старения (или испытания) скорость процессов выделения и коагуляции возрастает, до­стигается определенный макси­мум упрочнения, положение ко­торого зависит от состава спла­ва (рис. 189). Чем сложнее карбидные фазы по составу, чем легированнее аустенит ста­ли, тем больше эффект упроч­нения при старении и медлен­нее развиваются процессы раз­упрочнения.

Отметим также, что при низкотемпературном старении легирован­ного аустенита с выделением дисперсных фаз возникает состояние очень сильного упрочнения и одновременно падает пластичность, увеличива­ется чувствительность к хрупкому разрушению. Например, сталь 40Х12Н8Г8МФБ (ЭИ481) после низкотемпературного старения приоб­ретает высокую твердость, но чувствительна к надрезу, а ее жаропроч­ные свойства нестабильны. Поэтому для этой стали применяется двой­ное (или ступенчатое) старение: 660 0C (16 ч) и 800 «С (16 ч). Старе­ние при повышенной температуре способствует снятию части напряжений, возникающих при низкотемпературном старении, частичной коагуляция карбидных фаз.

3. Стали с интерметаллидным упрочнением

Жаропрочные хромоникелевые стали с интерметаллидным упрочнением, а также сплавы на хромоникелевой основе с высоким содержанием никеля (до 38%) нашли применение при изготовлении компрессоров, турбин, дисков, сварных изделий, шпилек, болтов и других деталей, работающих при температурах до 750—850°С.

HВ, MПа

Рис. 189. Зависимость твердости HB сталей с карбидным упрочнени­ем от температуры старения при выдержке 16 ч:

1 — сталь 37Х12Н8Г8; 2 — сталь 37Х12Н8Г8МФБ (В. Н. Захаров)

Легирование сталей этого типа преследует цель созда­ния высоколегированного железоникелевого аустенита, об­ладающего склонностью к распаду при старении, и об­разования фаз-упрочнителей — интерметаллидных фаз типа у’ — (Ni, Fe)3(Ti, Al) и фаз Лавеса [Fe2Mo, Fe2W1 Fe (Mo, W)].

О 123Ч5В789 Легирующий элемент, %

Рис. 191. Влияние содержания леги­рующих элементов на время до разрушения т сплава Х14Н35ВТЮ при 750 «С и а-=300 МПа (М. В. Придаицев)

Состав упрочняющих фаз в этих сталях изменяется в зависимости от легирования и определяет уровень длитель­ной прочности, достигаемый при различных температурах испытания. На рис. 190 приведена зависимость Одл°’ при

Ю3

Время, ч

Рис. 190. Длительная прочность при 750 °С стали типа 08Х15Н25В5, дополнительно легированной 0—2,2 % Al, 0—2,0 % Ti, 0—2,5 % Nb, 0—2,24 % Mo в зависимости от тнпа основной упрочняющей фазы: / — у’+AB2-, 2 — AB2′, 3 — Aie23Ct; 4 — Me23Ce+ +AB2 (И. Л. Мнркии, Ж. И. Фантаева, А. С. Терешкович)

Различных базах испытания, полученная на стали типа 08Х15Н25В5 при дополнительном введении легирующих элементов (Al, Nb, Mo, Ti), приводящих к выделению уп­рочняющих фаз различной природы. Установлено, что на­иболее высокая Одл° обеспечивается при совместном выде­лении у’-фазы и фаз Лавеса, а наименьшая длительная прочность при выделении карбидных фаз типа Me2зС6.

Фазы Лавеса могут растворять хром и никель и соответствовать формулам (Fe, Cr, Ni)2W, (Fe, Cr, Ni)2(W, Mo). Фазы Лавеса в ста­лях, богатых молибденом, начинают растворяться при более низких тем­пературах (900—950 °С), чем в сталях, богатых вольфрамом (1000— 1050 °С). Полного растворения этих фаз не происходит и при темпера­турах 1250—1300 0C, однако при нагреве до высоких температур они резко укрупняются. Как правило, фазы Лавеса имеют тенденцию к пре­имущественному выделению по границам зерен, однако могут выделять­ся и внутри кристаллов, по плоскостям скольжения.

Аустенитные стали с интерметаллидным упрочнением содержат повышенное количество никеля, титана и алюми­ния. Замена никеля марганцем в сталях этого типа не про­изводится, так как он не образует благоприятных для уп­рочнения интерметаллических фаз и понижает жаростой­кость сталей.

Содержание углерода в этих сталях ограничивают обычно

Scroll to Top