Основные закономерности при плавке в вакууме
При понижении давления атмосферы над металлом газы, растворенные в металле, выделяются из него, согласно закону Сивертса. Также происходит выделение из жидкого металла в газовую атмосферу примесей цветных металлов, которые обладают высокой упругостью пара. В результате плавки в вакууме, как правило, содержание олова, сурьмы, свинца и др. цветных металлов заметно снижается.
После плавки в вакууме происходит снижение содержания кислорода как растворенного в металле, так и находящегося в виде неметаллических оксидных включений. Это возможно благодаря протеканию реакции взаимодействия кислорода с углеродом: [С]+[0]=С0; [С]+ (MeO) =CO + Me. Поскольку парциальное давление СО в атмосфере вакуумной установки низкое, то равновесие указанных реакций значительно сдвигается в правую сторону, т. е. в сторону образования СО, что свидетельствует об удалении кислорода из металла. Эти же реакции могут быть использованы и для удаления углерода, если ставится задача получения низкоуглеродистых сталей и сплавов.
Благодаря повышению степени чистоты металла возрастают его свойства. Так, у конструкционных сталей повышается пластичность, у высокопрочных — предел прочности, у коррозионностойких — пластичность и сопротивление коррозии. Электротехнические стали и сплавы, выплавленные в вакууме, имеют меньшие электрические потери благодаря уменьшению электрического сопротивления и повышению магнитных свойств, чем стали, полученные обычной плавкой; у жаропрочных сплавов повышается предел рабочих температур, при которых эти сплавы могут быть использованы в двигателях. Это значительно повышает возможности двигателей — длительность работы, экономичность, мощность и т. д.; штампы из вакуумной стали позволяют изготовлять большее число штамповок, причем поверхность изделий значительно улучшается.
Выплавка сплавов и чистых металлов в вакууме позволила решить сложные задачи электронной и полупроводниковой техники. Ранее казавшиеся завышенными требования по чистоте металла по примесям в пределах нескольких десятитысячных долей процента теперь оказались достижимыми в результате развития техники зонной очистки в вакууме, выплавки металлов в электроннолучевых печах.
Вакуумная индукционная плавка
Вакуумная индукционная печь представляет собой высокочастотную печь, помещенную в герметичный корпус, из которого при помощи вакуумных насосов откачиваются газы. Вместимость вакуумных печей изменяется от нескольких килограммов до 30 т. Эти печи обладают рядом преимуществ перед другими вакуумными плавильными установками.
Во-первых, металл можно длительное время выдерживать при пониженном давлении. Благодаря этому сталь подвергается глубокой дегазации, раскислению и очищению от неметаллических включений и примесей цветных металлов. Во-вторых, в вакуумных индукционных печах можно выплавлять любые, сложные по химическому составу сплавы из самых различных шихтовых материалов. В-третьих, эти печи пригодны как для
Отливки крупных слитков массой в несколько тонн; так ; и для литья мелких фасонных изделий, в том числе способом центробежной отливки, по выплавляемым моделям и т. д. Недостатком этих печей является возмож — ; ность загрязнения жидкого металла вследствие контакта с огнеупорной футеровкой тигля, что может снижать
Эффективность рафинирования металла.
На рис. 86 приве — i дена схема вакуумной индукционной печи (до ; 30 т). В водоохлажда — ‘ емом корпусе, закрываемом герметичной крышкой, расположен высокочастотный индуктор с огнеупорным тиглем: загрузка ме — | талла производится без j открывания печи; до — I бавки мелких порций 1 ,осуществляются с по — j мощью дозатора — че — j рез погрузочный со — j
Рис. 86. Вакуумная индукционная 20-т печь:
1 — механизм загрузки; 2 — корпус; 3 — печь; 4 — изложница; S — камера изложниц
Вок. Разливка металла в изложницу или в литейную форму производится наклоном цечи. Печь оборудована устройствами для отбора проб и измерения темпе — i ратуры. Имеются окна для наблюдения за процессом ] плавки. 1
В крупных производственных установках вместимостью несколько тонн плавку ведут полунепрерывным процессом. Схема такой печи представлена на рис. 87. 1 В этих установках имеются шлюзовые устройства с ва — j куумными затворами, которые отделяют плавильную ка — j меру, в которой находится печь, от камеры изложниц и 1 шихты. В камере изложниц ставятся на тележки изложницы для отливки слитков. Камера закрывается снаружи и из нее откачивается воздух. Когда в камерах изложниц и печи давление уравняется, то открывают соединяющий их между собой затвор и изложницы электромеханическим приводом подают в печь для наполнения жидким металлом. После заливки слитков излож-
Рнс. 87. Схема вакуумной индукционной печи полунепрерывного действия:
1 — подвеска загрузочной корзины; 2 — загрузочная корзина; 3— шиберный затвор; 4 — печь; 5 — пульт управления; 6 — изложницы; 7 —тележка; 8— вакуумные насосы
Ницы вывозят из камеры печи в камеру изложниц. Соединительный затвор закрывают и в камеру изложниц напускают воздух. Открывают ее и убирают полные изложницы, ставят взамен пустые, затем цикл повторяется сначала. Все это время камера печи остается под низким давлением. Также работает и камера загрузки. В ней на тросе подвешивается бадья с порцией шихты. Затем камеру закрывают, откачивают и открывают шибер, отделяющий эту камеру от печной. Затем опускают бадью в тигель печи и загружают в печь. Пустую бадью поднимают, закрывают затвор и напускают в камеру загрузки воздух. Вместо пустой бадьи ставят бадью с шихтой. Печь работает без открывания плавильной камеры до тех пор, пока позволяет стойкость огнеупорной футеровки. Это составляет в среднем 20—40 плавок. Для смены тигля печь открывают и отсоединяют индуктор с тиглем от токо — и водоподводов. Вместо старого тигля устанавливают новый индуктор со свеженабитым или выложенным из кирпича тиглем. После закрывания камеры и откачки воздуха печь снова готова к работе. Полунепрерывные печи имеют более высокую производительность, чем печи, работающие периодически.
Вакуумные дуговые печи
Для получения крупных слитков до 60 т конструкционных, нержавеющих, высокопрочных и других сталей применяют вакуумные дуговые печи. В этих печах на — плавление слитка в вакууме в медный водоохлаждаемый
¦фСЗ— 1
Кристаллизатор производится при помощи электрической ду — гщ. Вакуумные дуговые печи имеют следующие преимущества: кристаллическая структура слитка получается более равномерной; исключается неравномерность распределения элементов (сегрегация), отсутствует усадочная раковина и
Рнс. 88. Схема вакуумной дуговой пе — чн:
1 — механизм подачи электрода; 2 — электрододержатель; 3 — вакуумное уплотнение; 4 — электрод; 5 — вакуумная камера; 6 — шнны токоподвода; 7 — кристаллизатор; 8 — дуга; 9 — направляемый слнток; 10 — кабели токоподвода
Другие дефекты, которые присущи слиткам, отлитым в обычные чугунные изложницы. Так как тигель медный, то благодаря отсутствию контакта с огнеупорными материалами не происходит загрязнения металла примесями и можно получать металл высокой степени чистоты. Недостатки этого метода: в дуговых вакуумных печах переплавляют готовую заготовку заданного состава; легирование по ходу плавки невозможно. Основную группу вакуумных дуговых печей представляют печи с расходуемым электродом. Схема такой печи представлена на рис. 88.
Печь состоит из герметичной камеры, к которой прикреплен медный кристаллизатор. Он представляет собой трубу диаметром от 150 до 1000 мм и более. Снаружи к трубе приварена рубашка водяного охлаждения, в которой под давлением циркулирует вода. Камера печи имеет патрубок для подсоединения к мощным вакуумным насосам. В верхней части камеры имеется сальниковое уплотнение, через которое в печь проходит стальная, полированная водоохлаждаемая штанга — электрододержатель. К концу штанги с помощью специального зажима крепится переплавляемая заготовка — электрод. Электрод может быть круглого или квадратного сечения. Отрицательный полюс от источника постоянного тока при помощи гибких кабелей подводится к электродо- держателю, а положительный полюс—к кристаллизатору при помощи медных шин. Перемещение электродо — держателя вместе с электродом осуществляется электромеханическим приводом с гибкой подвеской на системе тросов. Привод имеет автоматические регуляторы, которые управляют подачей электрода. При включении тока между концом электрода и дном кристаллизатора, на которое укладывается шайба-затравка, чтобы не повредить поддон, зажигается электрическая дуга. Под действием электрической дуги электрод расплавляется. Капли жидкого металла стекают в кристаллизатор и образуют в нем небольшую ванну. По мере расплавления электрода в кристаллизаторе образуется слиток. Металл затвердевает с высокой скоростью благодаря контакту с водоохлаждаемыми стенками кристаллизатора. Вследствие высокой теплопроводности меди и интенсивного ее охлаждения водой поверхностный слой кристаллизатора, контактирующий с жидким металлом, не успевает нагреться до температуры плавления. Благодаря быстрой и направленной кристаллизации слиток вакуумного дугового переплава имеет более благоприятное строение, чем обычный слиток. Поскольку плавку ведут в вакууме (~10-2 Па) и при относительно высокой температуре, то происходит удаление из металла газов, примесей цветных и неметаллических включений.
Для получения металла особо высокой чистоты проводят двойной переплав стали в вакуумной дуговой печи или слитки сначала выплавляют в вакуумной индукционной печи, а затем переплавляют в вакуумной дуговой.
Вторую группу вакуумных дуговых печей составляют печи с нерасходуемым электродом. В этих печах электрод изготовляется из вольфрама, он не плавится при процессе. Шихта подается в зону плавления под электрод. Между постоянным электродом и шихтой горит дуга, металл плавится в медном водоохлаждаемом кристаллизаторе. На стенках кристаллизатора, имеющем форму чаши, образуется толстый слой нерасплавляемо — го металла — гарнисаж, который и образует стенки тигля, а в нем наплавляется жидкая ванна. По окончании плавки тигель наклоняют и металл разливают в форму или изложницу, установленную рядом с тиглем. Таким образом производят фасонные отливки из тугоплавких жаропрочных сплавов.
Электроннолучевые печи
Для выплавки особо чистых металлов, стали и сплавов, для получения тугоплавких металлов высокой степени чистоты — молибдена, вольфрама — применяют
Электроннолучевые печи. Принцип нагрева Металла в этих установках заключается в бомбардировке нагреваемого объекта электронным пучком высокой энергии. Наплавле — ние металла производится в водоохлаждае — мый! медный кристаллизатор. Плавку ведут в глубоком вакууме.
Рис. 89. Электроннолучевая печь с осевой пушкой:
/ — электронная пушка; 2 —пучок электронов; 3 — переплавляемая заготовка; 4 — ванна жидкого металла; 5 — кристаллизатор; 6 — слнток
Преимуществами, этих печей являются высокая степень рафинирования благодаря высокой температуре, глубокому вакууму, отсутствию огнеупорной футеровки; возможность переплавлять активные металлы и тугоплавкие (вольфрам, ниобий). К недостаткам печей относятся: повышенный расход электроэнергии, сложность и дороговизна установок. Принцип работы установки с осевой электроннолучевой пушкой показан на рис. 89: катод — К нагревается от вспомогательного электрода /C2 электронной бомбардировкой. Вспомогательный катод разогревается пропусканием по нему тока. Между основным и вспомогательным электродом прикладывается небольшая разность потенциалов для разгона электронов. Вокруг катода помещается фокусирующий электрод, который имеет слабый отрицательный заряд. Его назначением является фокусирование электронного потока в отверстие анода, предотвращение отклонения электронов от заданного направления.
Анод выполняют в виде диаграммы с отверстием, причем анод заземлен, а катод изолирован. Между катодом и анодом прилагается основное разгоняющее напряжение до 30 кВ. Ниже анода располагается трубка лучепровода, вокруг которой расположена фокусирующая система, собирающая пучок электронов в узкий луч и фокусирующая его на нагревательном объекте. Далее следует отклоняющая система, направляющая луч в любое место заготовки или разворачивающая луч по определенной траектории, например по кругу, спирали Архимеда и т. п. Отклоняющая и фокусирующая системы представляют собой электромагнитные катушки, создающие управляемое магнитное поле. Взаимодействие магнитного поля с электронным пучком оказывает нужное воздействие на пучок. Для нагрева и проплавления шихты равномерно распределяют энергию пучка по нагреваемому концу заготовки или по шихте, загруженной в тигель.
Электронная плавильная установка состоит из камеры, внутри которой расположен либо медный водохлаж — даемый кристаллизатор с устройством для вытягивания слитка, либо медная водоохлаждаемая чаша — тигель для плавки в гарнисаже. Разливка осуществляется на — клоном’чаши. Плавку ведут при давлении IO-2—Ю-3 Па. Заготовку круглого или квадратного сечения подают в печь сверху при оси кристаллизатора, либо сбоку горизонтально. На рис. 90 представлена схема крупнейшей в мире печи ЕМО-1200, сконструированной и построенной в ГДР, с пушкой мощностью до 1700 кВт, в которой можно выплавлять слитки массой до 11 т. Камера печи имеет два боковых шлюза, через которые производится подача заготовки массой до 1 т. Электронный пучок имеет программированное синусоидальное отклонение по поверхности жидкой ванны. Расход электроэнергии в этой установке 900 кВт-ч/т, а годовая производительность печи до 4000 т.
Разновидностью электроннолучевых установок являются установки с кольцевым катодом (рис. 91). Вольфрамовый кольцевой катод располагается в непосредственной близости от переплавляемой заготовки. Катод разогревается током от накального трансформатора до 2000—2500 0C. Фокусирующий электрод-экран направляет поток электронов на заготовку и на ванну металла в
Рис. 90. Схема электроннолучевой печи EMO-1200:
/ — рабочая плита; 2 — шибера; 3 — заготовка; 4 — электронная пушка; 5 — вакуумная камера; 6 — кристаллизатор; 7 —механизм вытягивания слитка; 8 — слнток
Кристаллизаторе. Между катодом и заготовкой прикладывается разгоняющее напряжение. Эти установки удобны для выплавки больших слитков, однако вследствие близкого расположения катода к расплавленному металлу на нем осаждаются капли металла и брызги, что приводит к преждевременному выходу катода из строя.
Электроннолучевая плавка с успехом применяется для получения слитков стали и тугоплавких металлов высокой степени чистоты. При переплаве вольфрама, ниобия, тантала, молибдена получают содержание углерода, азота, кислорода, менее тысячной доли процента. Благодаря повышению степени чистоты повышается пластичность тугоплавких металлов. Переплав гафния и циркония позволяет значительно уменьшить содержание углерода, водорода, азота, повысить антикоррозионные свойства этих металлов, значительно уменьшить содержание таких примесей, как медь, никель, железо. Электроннолучевой переплав может быть использован для получения слитков специальных сталей, предназначенных для изготовления особоважных и точных приборов и деталей, работающих в тяжелых условиях. При переплаве стали происходит значитель — /
Ное очищение ее от свинца, у
Висмута, олова, сурьмы и дру — *
Гих примесей цветных металлов, значительно уменьшается содержание неметаллических включений.
Развитие современной авиации, космической техники, радиоэлектроники, атомной энергетики, точного машиностроения, вычислительных средств потребовало производства высококачественных сталей, жаропрочных сплавов, чистых металлов, которые невозможно получать обычными способами. Новые металлы и сплавы для этих отраслей промышленности должны содержать минимальное количество кислорода, водорода, азота, серы, фосфора, примесей цветных металлов, неметаллических включений. Такие металлы можно получать только в специальных печах, работающих при пониженном давлении (в вакууме).
Для получения больших масс высококачественной стали (>100 т) одновременно используют вакуумную обработку жидкой стали, выплавленной в обычных сталеплавильных печах и конвертерах. Вакуумная обработка позволяет получать не только более чистый металл, но и изменяет технологию обычного процесса. Существуют две области вакуумной металлургии: печная и вне — печная.
В настоящее время индукционные печи находят широкое применение в металлургии и машиностроении. В лабораториях используют высокочастотные печи емкостью от нескольких грамм до 100 кг, в литейных цехах низко — и среднечастотные печи до 2—6 т; наиболее крупные печи имеют емкость до 60 т. По сравнению с дуговыми электропечами в индукционных печах отсутствие электродов и электрических дуг дает возможность получать стали и сплавы с низким содержанием углерода и газов. Плавка характеризуется небольшим угаром легирующих элементов, высоким электрическим к. п. д., точным регулированием температуры металла.
Недостатком печей является холодный, плохо перемешиваемый шлак, что не позволяет так же интенсивно, как в дуговых печах, проводить процессы рафинирования. Стойкость футеровки в печах невысокая.
Основной тип современных высокочастотных или индукционных печей — это печи без сердечника. Такая печь состоит из индуктора-катушки, навитой из медной трубки с водяным охлаждением. Внутрь индуктора вставляется либо готовый огнеупорный тигель, либо тигель набивается порошкообразным огнеупорным материалом. При наложении на индуктор переменного электрического тока частотой от 50 до 400 кГц образуется переменное магнитное силовое поле, пронизывающее пространство внутри индуктора. Это магнитное поле наводит в металлической садке вихревые токи.
Устройство индукционных печей
На рис. 83 представлена индукционная сталеплавильная печь. В центре печи помещен индуктор. Он имеет вид соленоида и изготовлен из профилированной медной трубы. По трубе идет вода для ее охлаждения. Внутри индуктора набит огнеупорный тигель, схема футеровки представлена на рис. 84. Ток подается по гибким кабелям. Печь заключена в металлический кожух. Сверху тигель закрывается сводом. Поворот печи для слива металла осуществляется вокруг оси, расположенной у сливного носка. Поворотные цапфы печи покоятся на опорных подшипниках станин. Наклон печи проводится при помощи реечного механизма через подвижные шарниры-цапфы или гидроприводом. Небольшие печи наклоняют при помощи тали.
Футеровка печей может быть кислой или основной, набивной или кирпичной. Для набивки используют огнеупорные материалы различной крупности от долей миллиметра до 2—4 мм. Для основной футеровки приме-
Рис. 83. Индукционная сталеплавильная печь:
/ — механизм наклона; 2 —индуктор; 3 —тигель; 4 — свод; 5 —сливной носок; 6 — верхняя керамика; 7 — верхняя цапфа; S — нижняя цапфа; 9 — подовая плита; 10 — токоподвод
Няют порошок магнезита с добавками хромомагнезита и борной кислоты для связки. Кислые смеси готовят на основе молотого кварцита. Набивку тигля ведут послойно вокруг металлического шаблона, форма которого соответствует профилю тигля.
193
После окончания набивки футеровку спекают и обжигают. В железный шаблон загружают чугун, включают ток, металл постепенно разогревается и нагревает футеровку. Затем металл доводят до плавления. В первой плавке расплавляют мягкое железо, что позволяет достичь высокой температуры для обжига футеровки. Крупные печи футеруют фасонным огнеупорным кирпичом.
13—398
Электрическое оборудование
Индукционные печи питаются током высокой частоты от ламповых генераторов или током средней частоты (2500 Гц) от машинных преобразователей. Крупные печи работают на токе промышленной лизкой частоты (50
Рис. 84. Футеровка индукционной печи:
1 — индуктор; 2 — тигель; 3 — огнеупорный под; 4 — съемный свод; 5 — Сливной иосок
Гц от сети). Эти печи часто служат в качестве миксеров жидкого металла в литейных цехах.
На рис. 85 представлена упрощенная электрическая схема высокочастотной печи. В схему входят машинный генератор, батарея конденсаторов и автоматический регулятор, плавильный контур. Преобразовательный агрегат состоит из асинхронного электродвигателя, вращающего генератор и динамомашину, которая дает ток в обмотки возбуждения генератора.
Для компенсации реактивной мощности и создания электрического резонанса устанавливают батарею конденсаторов. Часть конденсаторов может быть отключена для изменения емкостной составляющей. Резонанс бывает при условии coL=l/coC(L— коэффициент самоиндукции печи, С — емкость конденсатора, ю •— угловая частота). Подбирая переменную емкость, можно работать в условиях, близких к резонансу, т. е. поддерживать cos ф близкий к единице. Автоматический регулятор электрического режима поддерживает оптимальную электрическую мощность взаимосвязанным регулированием соэф, напряжения и силы тока.
Технология плавки стали в индукционной печи
Xjt
-и
Плавку проводят на высококачественном ломе с пониженным содержанием фосфора и серы. Крупные и мелкие куски
Ami
Рис. 85. Электрическая схема индукционной печи:
1 — выключатель; 2 — асинхронный двигатель; 3 — генератор; 4 — дина — иомашина; S — регулятор; 6 — батарея конденсаторов; 7 — индуктор с тиглем
LF 5 J
LwlwJ» I ^АЛГ1 I
1O1
ГО
Так укладывают в тигель или бадью, с помощью которой загружают крупные печи, чтобы Они плотно заполняли объем тигля. Тугоплавкие ферросплавы укладывают на дно тигля. После загрузки включают ток на полную мощность. По мере проплавления и оседания скрапа подгружают шихту, не вошедшую сразу в тигель. Когда последние куски шихты погрузятся в жидкий металл, на поверхность металла забрасывают шла — кообразующие материалы: известь, магнезитовый порошок, плавиковый шпат. Шлак защищает металл от контакта с атмосферой, предотвращает тепловые потери. По ходу плавки шлак раскисляют добавками порошка кокса, молотого ферросилиция. Металл раскисляют кусковыми ферросплавами и в конце алюминием. По ходу плавки дают добавки легирующих. Поскольку угара легирующих практически не происходит, то в индукционных печах можно выплавлять сплавы сложного состава.
Первая дуговая электропечь в России была установлена в 1910 г. на Обуховском заводе. За годы пятилеток были построены сотни различных печей. Вместимость наиболее крупной печи в СССР 200 т. Самые большие в мире электродуговые печи (400 т) работают в США.
На рис. 73 показана современная дуговая электропечь вместимостью 200 т. Печь состоит из железного кожуха цилиндрической формы со сферическим днищем. Внутри кожух имеет огнеупорную футеровку. Плавильное пространство печи закрывается съемным сводом. Печь имеет рабочее окно и выпускное отверстие со сливным желобом. Питание печи осуществляется трехфазным переменным током. Нагрев и плавление металла осуществляются электрическими мощными дугами, горящими между концами трех электродов и металлом, находящимся в печи. Печь опирается на два опорных сектора, перекатывающихся по станине. Наклон печи в сторону выпуска и рабочего окна осуществляется при помощи реечного механизма. Перед загрузкой печи свод, подвешенный на цепях, поднимают к порталу, затем портал со сводом и электродами отворачивается в сторону сливного желоба и печь загружают бадьей.
Механическое оборудование дуговой печи
Кожух. Кожух печи должен выдерживать нагрузку от массы огнеупоров и металла. Его делают сварным из листового железа толщиной 16—50 мм в зависимости от размеров печи. Форма кожуха определяет профиль рабочего пространства дуговой печи. Наиболее распространенным в настоящее время является кожух цилиндро-
Рис. 73. Дуговая сталеплавильная 200-т печь:
/ — электрод; 2 — электрододержатель; 3 — свод; 4 — подвеска свода; 5 — сводовое кольцо; 6 — цилиндрический кожух; 7 — рабочая площадка; 8 — механизм наклона печи; 9— станина; 10— Люлька; 11 — сливной иосок; 12 — портал; 13 — гибкий токопро — вод; 14 — стойка электрододержателя; 15 — рукав электроцодер — жателя; 16 — трубошины токопровода
Конической формы (рис. 74). Нижняя часть кожуха имеет форму цилиндра, верхняя часть — конусообразная с расширением кверху. Такая форма кожуха облегчает заправку печи огнеупорным материалом, наклонные стены увеличивают стойкость кладки, так как она дальше расположена от электрических дуг. Используют также кожухи цилиндрической формы с водоохлаждаемыми панелями. Для сохранения правильной цилиндрической формы кожух усиливается ребрами и кольцами жесткости. Днище кожуха обычно выполняется сферическим,
Что обеспечивает наибольшую прочность кожуха и минимальную массу кладки. Днище выполняют из немагнитной стали для установки под печью электромагнитного перемешивающего устройства.
Свод. Сверху печь закрыта сводом. Свод набирают из огнеупорного кирпича в металлическом водоохлажда — емом сводовом кольце, которое выдерживает распирающие усилия арочного сферического свода. В нижней части кольца имеется выступ — нож, который входит в песчаный затвор кожуха печи. В кирпичной кладке свода оставляют три отверстия для электродов. Диаметр отверстий больше диаметра электрода, поэтому во время плавки в зазор устремляются горячие газы, которые разрушают электрод и выносят тепло из печи. Для предотвращения этого на своде устанавливают холодильники или экономайзеры, служащие для уплотнения электродных отверстий и для охлаждения кладки свода. Газодинамические экономайзеры обеспечивают уплотнение с помощью воздушной завесы вокруг электрода. В своде имеется также отверстие для отсоса запыленных газов и отверстие для кислородной фурмы.
Рабочее окно. Для загрузки шихты в печи небольшой емкости и подгрузки легирующих и флюсов в крупные печи, скачивания шлака, осмотра, заправки и ремонта печи имеется загрузочное окно, обрамленное литой рамой. К раме крепятся направляющие, по которым скользит заслонка. Заслонку футеруют огнеупорным кирпичом. Для подъема заслонки используют пневматический, гидравлический или электромеханический привод.
Рис. 74. Цилиндро-конический кожух дуговой сталеплавильной печи
С противоположной стороны кожух имеет окно для выпуска стали из печи. К окну приварен сливной желоб. Отверстие для выпуска стали может быть круглым диаметром 120—150 мм или квадратным 150X250 мм. Сливной желоб имеет корытообразное сечение и приварен к кожуху под углом 10—12° к горизонтали. Изнутри желоб футеруют шамотным кирпичом, длина его составляет 1—2 м.
Электрододержатели служат для подвода тока к электродам и для зажима электродов. Головки электрододер — жателей делают из бронзы или стали и охлаждают водой, так как они сильно нагреваются как теплом из печи, так и контактными токами. Электрододержатель должен плотно зажимать электрод и иметь небольшое контактное сопротивление. Наиболее распространенным в настоящее время является пружинно-пневматический электрододержатель (рис. 75). Зажим электрода осуществляется при помощи неподвижного кольца и зажимной плиты, которая прижимается к электроду пружиной. От — жатие плиты от электрода и сжатие пружины происходят при помощи сжатого воздуха. Электрододержатель крепится на металлическом рукаве — консоли, который скрепляется с Г-образной подвижной стойкой в одну жесткую конструкцию. Стойка может перемещаться вверх или вниз внутри неподвижной коробчатой стойки. Три неподвижные стойки жестко связаны в одну общую конструкцию, которая покоится на платформе опорной люльки печи. Перемещение подвижных телескопических стоек происходит или с помощью системы тросов и противовесов, приводимых в движение электродвигателями, или с помощью гидравлических устройств. Механизмы перемещения электродов должны обеспечить быстрый подъем электродов в случае обвала шихты в процессе плавления, а также плавное опускание электродов во избежание их погружения в металл или ударов о нераспла — вившиеся куски шихты. Скорость подъема электродов составляет 2,5—6,0 м/мин, скорость опускания 1,0— 2,0 м/мин.
Механизм наклона печи должен плавно наклонять печь в сторону выпускного отверстия на угол 40—45° для выпуска стали и на угол 10—15° в сторону рабочего окна для спуска шлака. Схема механизма наклона представлена на рис. 76. Станина печи, или люлька, на которой установлен корпус, опирается на два — четыре опорных сектора, которые перекатываются по горизонтальным направляющим. В секторах имеются отверстия, а в направляющих — зубцы, при помощи которых предотвращается проскальзывание секторов при наклоне печи. Наклон печи осуществляется при помощи рейки и зубчатого механизма или гидравлическим приводом. Два цилиндра укреплены на неподвижных опорах фундамента, а штоки шарнирно связаны с опорными секторами люльки печи.
Система загрузки печи бывает двух видов: через завалочное окно мульдозавалочной машиной и через верх при помощи бадьи. Загрузку через окно применяют только на небольших печах.
Рис. 75. Механизм перемещения электродов (а); пружин — но-пневматическнй электрододержатель (б):
/ — электрод; 2— хомут; 3—рукав электрододержателя; 4 — каретка; 5 — стойка; 6 — противовес; 7 — двигатель механизма перемещения электрода; 8 — пневмоцилиндр; 9 — трубошины; 10 — пружина; 11 — башмак электрододержателя; 12 — тяга
При загрузке печи сверху в один-два приема в течение мин меньше охлаждается футеровка, сокращается время плавки; уменьшается расход электроэнергии; эффективнее используется объем печи. Для загрузки печи свод приподнимают на 150—200 мм над кожухом печи и поворачивают в сторону вместе с электродами, полно
Стью открывая рабочее пространство печи для введения бадьи с шихтой. Свод печи подвешен к раме. Она соединена с неподвижными стойками электрододержателей в одну жесткую конструкцию, покоящуюся на поворотной консоли, которая укреплена на опорном подшипнике. Крупные печи имеют поворотную башню, в которой сосредоточены все механизмы отворота свода. Башня вращается вокруг шарнира на катках по дугообразному рельсу. Бадья представляет собой стальной цилиндр, диаметр которого меньше диаметра рабочего пространства печи. Снизу цилиндра имеются подвижные гибкие сектора, концы которых стягиваются через кольца тросом. Взвешивание и загрузка шихты производятся на шихтовом дворе электросталеплавильного цеха. Бадья на тележке подается в цех, поднимается краном и опускается в печь. При помощи вспомогательного подъема крана трос выдергивают из проушин секторов и при
Подъеме бадьи сектора раскрываются и шихта вываливается в печь в том порядке, в каком она была уложена в бадье. Схема бадьи приведена на рис. 77.
При использовании в качестве шихты металлизован — ных окатышей загрузка может производиться непрерывно по трубопроводу, который проходит в отверстие в своде печи.
Во время плавления электроды прорезают в шихте три колодца, на дне которых накапливается жидкий металл. Для ускорения расплавления печи оборудуются поворотным устройством, которое поворачивает корпус в одну и другую сторону на угол в 80°. При этом электроды прорезают в шихте уже девять колодцев. Для поворота корпуса приподнимают свод, поднимают электроды выше уровня шихты и поворачивают корпус при помощи зубчатого венца, прикрепленного к корпусу, и шестерен. Корпус печи опирается на ролики.
Очистка отходящих газов
Современные крупные сталеплавильные дуговые печи во время работы выделяют в атмосферу большое количество запыленных газов. Применение кислорода и порошкообразных материалов еще более способствует этому. Содержание пыли в газах электродуговых печей достигает 10 г/м3 и значительно превышает норму. Для улавливания пыли производят отсос газой из рабочего пространства печей мощным вентилятором. Для этого в своде печи делают четвертое отверстие с патрубком для газоотсоса. Патрубок через зазор, позволяющий наклонять или вращать печь, подходит к стационарному трубопроводу. По пути газы разбавляются воздухом, необходимым для дожигания СО. Затем газы охлаждаются водяными форсунками в теплообменнике и направляются в систему труб Вентури, в которых пыль задерживается в результате увлажнения. Применяют также тканевые фильтры, дезинтеграторы и электрофильтры. Используют системы газоочистки, включающие полностью весь электросталеплавильный цех, с установкой зонтов дымоотсоса под крышей цеха над электропечами.
Футеровка печей
Большинство дуговых печей имеет основную футеровку, состоящую из материалов на основе MgO. Футеровка печи создает ванну для металла и играет роль теплоизолирующего слоя, уменьшающего потери тепла. Oc — новные части футеровки — подина печи, стены, свод. Общий вид футеровки 100-т печи показан на рис. 78. Температура в зоне электрических дуг достигает нескольких тысяч градусов. Хотя футеровка электропечи отделена от дуг, она все же должна выдерживать нагрев до температуры HOO0C. В связи с этим применяемые для
Ф7040
Рис. 78. Схема футеровки 100-т электропечи:
/ — металлический кожух; 2 — листовой асбест; 3 — слой шамотиого порошка; 4 — шамотный кирпич; 5 — магнезитовый кирпич; 6—магнезитовый порошок; 7 —кольцевой рельс; 8 — заслонка; 9 — рама рабочего окна; 10 — уплотняющее кольцо; U — песочный затвор; 12 — магнезитохромитовый кирпич; 13—Молотый асбест
Футеровки материалы должны обладать высокой огнеупорностью, механической прочностью, термо — и химической устойчивостью. Подину сталеплавильной печи набирают в следующем порядке. На стальной кожух укладывают листовой асбест, на асбест — слой шамотного порошка, два слоя шамотного кирпича и основной слой из магнезитового кирпича. На магнезитовой кирпичной подине набивают рабочий слой из магнезитового порошка со смолой и пеком — продуктом нефтепереработки. Толщина набивного слоя составляет 200 мм. Общая толщина подины равна примерно глубине ванны и может достигать 1 м для крупных печей. Стены печи выкладывают после соответствующей прокладки асбеста и шамотного кирпича из крупноразмерного безобжигового магнезитохромитового кирпича длиной до 430 мм.
Кладка стен может выполняться из кирпичей в железных кассетах, которые обеспечивают сваривание кирпичей в один монолитный блок. Стойкость стен достигает 100—150 плавок. Стойкость подины составляет один — два года. В трудных условиях работает футеровка свода печи. Она выдерживает большие тепловые нагрузки от горящих дуг и тепла, отражаемого шлаком. Своды крупных печей набирают из магнезитохромитового кирпича. При наборе свода используют нормальный и фасонный кирпич. В поперечном сечении свод имеет форму арки, что обеспечивает плотное сцепление кирпичей между собой. Стойкость свода составляет 50—100 плавок. Она зависит от электрического режима плавки, от длительности пребывания в печи жидкого металла, состава выплавляемых стали, шлака. В настоящее время широкое распространение получают водоохлаждаемые своды и стеновые панели. Эти элементы облегчают службу футеровки.
V
Электроды, электрическая дуга
Ток в плавильное пространство печи подается через электроды, собранные из секций, каждая из которых представляет собой круглую заготовку диаметром от 100 до 610 мм и длиной до 1500 мм. В малых электропечах используют угольные электроды, в крупных — графи — тированные. Графитированные электроды изготавливают из малозольных углеродистых материалов: нефтяного кокса, смолы, пека. Электродную массу смешивают и прессуют, после чего сырая заготовка обжигается в газовых печах при 1300 °С и подвергается дополнительному графитирующему обжигу при температуре 2600— 2800 0C в электрических печах сопротивления. В процессе эксплуатации в результате окисления печными газами и распыления при горении дуги электроды сгорают. По мере укорачивания электрод опускают в печь. При этом электрододержатель приближается к своду. Наступает момент, когда электрод становится настолько коротким, что не может поддерживать дугу, и его необходимо наращивать. Для наращивания электродов в концах секций сделаны отверстия с резьбой, куда ввинчивается переходник-ниппель, при помощи которого соединяются отдельные секции. Расход электродов составляет 5—9 кг на тонну выплавляемой стали.
Электрическая дуга — один из видов электрического разряда, при котором ток проходит через ионизированные газы, пары металлов. При кратковременном сближении электродов с шихтой или друг с другом возникает короткое замыкание. Идет ток большой силы. Концы электродов раскаляются добела. При раздвигании электродов между ними возникает электрическая дуга. С раскаленного катода происходит термоэлектронная эмиссия электронов, которые, направляясь к аноду, сталкиваются с нейтральными молекулами газа и ионизируют их. Отрицательные ионы направляются к аноду, положительные к катоду. Пространство между анодом и катодом становится ионизированным, токопроводящим. Бомбардировка анода электронами и ионами вызывает сильный его разогрев. Температура анода может достигать 4000 °С. Дуга может гореть на постоянном и на переменном токе. Электродуговые печи работают на переменном токе. В последнее время в ФРГ построена электродуговая печь на постоянном токе.
В первую половину периода, когда катодом является электрод, дуга горит. При перемене полярности, когда катодом становится шихта — металл, дуга гаснет, так как в начальный период плавки металл еще не нагрет и его температура недостаточна для эмиссии электронов. Поэтому в начальный период плавки дуга горит неспокойно, прерывисто. После того как ванна покрывается слоем шлака, дуга стабилизируется и горит более ровно.
Электрооборудование
Рабочее напряжение электродуговых печей составляет 100—800 В, а сила тока измеряется десятками тысяч ампер. Мощность отдельной установки может достигать 50—140 MB-А. К подстанции электросталеплавильного цеха подают ток напряжением до 110 кВ. Высоким напряжением питаются первичные обмотки печных трансформаторов. На рис. 79 показана упрощенная схема электрического питания печи. В электрическое оборудование дуговой печи входят следующие приборы:
177
1. Воздушный разъединитель, предназначен для отключения всей электропечной установки от линии высокого напряжения во время производства ремонтных работ на печи.
12—398
2. Главный автоматический выключатель, служит для отключения под нагрузкой электрической цепи, по которой протекает ток высокого напряжения. При неплотной укладке шихты в печи в начале плавки, когда шихта еще холодная, дуги горят неустойчиво, происходят обвалы шихты и возникают короткие замыкания между электродами. При этом сила тока резко возрастает. Это приводит к большим перегрузкам трансформатора, который может выйти из строя. Когда сила тока превысит установленный предел, выключатель автоматически отключает установку, для чего имеется реле максимальной силы тока.
3. Печной трансформатор необходим для преобразования высокого напряжения в низкое (с 6—10 кВ до 100—800 В). Обмотки высокого и низкого напряжения и магнитопроводы, на которых они помещены, располагаются в баке с
I^rgjlj
Рис. 79. Схема электропитания дуговой печи:
1 — высоковольтный кабель; 2 — разъединитель; 3 — главный выключатель; 4 — трансформатор тока; 5 — трансформатор напряжения; 6 — защитные реле, измерительные приборы; 7—дроссель; 8 — шунтирующий выключатель; 9 — переключатель ступеней напряжения; 10 — печной трансформатор; U— регулятор; 12 — электроды; 13 — металл
Маслом, служащим для охлаждения обмоток. Охлаждение создается принудительным перекачиванием масла из трансформаторного кожуха в бак теплообменника, в котором масло охлаждается водой. Трансформатор устанавливают рядом с электропечью в специальном помещении. Он имеет устройство, позволяющее переключать обмотки по ступеням и таким образом ступенчато регулировать подаваемое в печь напряжение. Так, например, трансформатор для 200-т отечественной печи мощностью 65 MB-A имеет 23 ступени
Рис. 80. Схема короткой сети электродуговой печи:
1 — электроды; 2 — жесткие трубошииы; 3 — гибкие электроподводы; 4 — фидер; 5 — печной трансформатор
. напряжения, которые переключаются под нагрузкой, без отключения печи. На рис. 80 представлена схема подачи электроэнергии к дуговой печи.
12*
179
Участок электрической сети от трансформатора до электродов называется короткой сетью. Выходящие из стены трансформаторной подстанции фидеры при помощи гибких, водоохлаждаемых кабелей подают напряжение на электрододержатель. Длина гибкого участка должна позволять производить нужный наклон печи и отворачивать свод для загрузки. Гибкие кабели соединяются с медными водоохлаждаемыми шинами, установленными на рукавах электрододержателей. Трубошины непосредственно присоединены к головке электрододер — жателя, зажимающей электрод. Помимо указанных основных узлов электрической сети в нее входит различная измерительная аппаратура, подсоединяемая к линиям тока через трансформаторы тока или напряжения, а также приборы автоматического регулирования процесса плавки.
Автоматическое регулирование
По ходу плавки в электродуговую печь требуется подавать различное количество энергии. Менять подачу мощности можно изменением напряжения или силы тока дуги. Регулирование напряжения производится переключением обмоток трансформатора. Регулирование силы тока осуществляется изменением расстояния между электродом и шихтой путем подъема или опускания электродов. При этом напряжение дуги не изменяется. Опускание или подъем электродов производятся автоматически при помощи автоматических регуляторов, установленных на каждой фазе печи. В современных печах заданная программа электрического режима может быть установлена на весь период плавки.
Устройство для электромагнитного перемешивания металла
Для перемешивания металла в крупных дуговых печах, для ускорения и облегчения проведения технологических операций скачивания шлака под днищем печи в коробке устанавливается электрическая обмотка, которая охлаждается водой или сжатым воздухом. Обмотки статора питаются от двухфазного генератора током низкой частоты, что создает бегущее магнитное поле, которое захватывает ванну жидкого металла и вызывает движение нижних слоев металла вдоль подины печи в направлении движения поля. Верхние слои металла вместе с прилегающим к нему шлаком движутся в обратную сторону. Таким образом можно направить движение либо в сторону рабочего окна, что будет облегчать выход шлака из печи, либо в сторону сливного отверстия, что будет благоприятствовать равномерному распределению легирующих и раскислителей и усреднению состава металла и его температуры. Этот метод в последнее время «имеет ограниченное применение, так как в сверхмощных печах металл активно перемешивается дугами.
¦§ 2. Плавка стали в основной дуговой электропечи
Сырые материалы
Основным материалом для электроплавки является стальной лом. Лом не должен быть сильно окисленным, так как наличие большого количества ржавчины вносит в сталь значительное количество водорода. В зависимости от химического состава лом необходимо рассортировать на соответствующие группы. Основное количество лома, предназначенное для плавки в электропечах, должно быть компактным и тяжеловесным. При малой насыпной массе лома вся порция для плавки не помещается в печь. Приходится прерывать процесс плавки и подгружать шихту. Это увеличивает продолжительность плавки, приводит к повышенному расходу электроэнергии, снижает производительность электропечей. В последнее время в электропечах используют металлизованные окатыши, полученные методом прямого восстановления. Достоинством этого вида сырья, содержащего 85— 93 % железа, является то, что оно не загрязнено медью н другими примесями. Окатыши целесообразно применять для выплавки высокопрочных конструкционных легированных сталей, электротехнических, шарикоподшипниковых сталей.
Легированные отходы образуются в электросталеплавильном цехе в виде недолитых слитков, лнтннков; в обдирочном отделении в виде стружки, в прокатных цехах в виде обрези и брака и т. д.; кроме того много легированного лома поступает от машиностроительных заводов. Использование легированных металлоотходов позволяет экономить ценные легирующие, повышает экономическую эффективность электроплавок.
Мягкое железо специально выплавляют в мартеновских печах и конвертерах н применяют для регулирования содержания углерода в процессе электроплавки. В железе содержится 0,01—0,15 % С и 1700 0C динасовый кирпич сплавляется и разъедается плавильной пылью.
Применение магнезитохромитового свода позволяет повысить температуру в печи, а также увеличить производительность печи и срок службы свода. Допустимая температура нагрева составляет 1750—1800°С. Стойкость магнезитохромитового свода достигает 300—1000 плавок против 200—350 плавок у динасового свода. Однако при использовании магнезитохромитового свода, обладающего значительными объемными изменениями при колебаниях температуры, устройство обычного арочного свода невозможно. Свод выполняют подвесным с креплениями и прокладками между кирпичами. Это усложняет конструкцию и повышает ее стоимость. Тем не менее в СССР и за рубежом магнезитохромитовые своды получили широкое распространение. Экономически это ‘ оправдано.
В последнее время интенсивно ведутся работы по замене кладки элементов печи заранее подготовленными блоками и частичной или полной замене огнеупорной кладки водоохлаждаемыми конструкциями.
Головки печи должны обеспечить подачу требуемого количества топлива; хорошее перемешивание топлива с воздухом и полное его сжигание; хорошую настильность факела по всей длине ванны, чтобы передать максимум тепла ванне и минимум — стенам и своду; минимальное сопротивление при отводе продуктов сгорания из рабочего пространства.
В’соответствии с первыми тремя требованиями сечение выходных отверстий головок должно быть, небольшим (обеспечить максимальную скорость ввода в печь воздуха и топлива); для удовлетворения четвертого тре-
P-
/ г
J Ц
Рис. 68. Разрез регенератора и шлаковика:
/ — шлаковики; 2 — свод; 3 — перевальная стенка; 4 — окно; S — регенератор
Рис. 69. Насадка регенератора
Бования, наоборот, сечение должно быть большим. Двойственная роль головок, обусловленная реверсивным движением газов в печи, ставит трудную задачу при разработке рациональной конструкции. Поэтому работы по улучшению конструкции головок ведутся до настоящего времени.
Шлаковика. Продукты сгорания вместе с плавильной пылью, состоящей из оксидов железа, частиц шлака, извести и руды, из рабочего пространства через головку и вертикальные каналы попадают в шлаковики. Основное назначение шлаковикор — предохранение насадок регенераторов от засорения плавильной пылью. Шлаковики (рис. 68) представляют собой камеры, вытянутые под головками параллельно поперечной оси печи. Сечение шла — ковиков больше сечения вертикального канала. Поэтому ^ дымовые газы, попадая в шлаковик, резко теряют ~вок> скорость, одновременно изменяя направление движения. При этом большая часть плавильной пыли (~60%) оседает в шлаковиках. Шлаковики соединены с вертикальными каналами при помощи окон в сводах и сообщаются с регенератором через окна, расположенные над перевальной стенкой, Шлаковики выкладывают из дина — сового кирпича (при динасовом своде) и из хромомагне- зитового кирпича (при магнезитохромитовом своде).
Операция очистки шлаковиков от осевшей пыли очень трудоемкая. На современных крупных печах предусмот — — рены приспособления для механизированной очистки шлаковиков.
Регенераторы. {4з шлаковиков отходящие газы с температурой ~1600°С попадают в регенераторы, в которых физическое тепло отходящих газов используется для подогрева направляемых в печь воздуха и газа. Регене — раторы^представляют собой прямоугольные камеры, заполненные решеткой из огнеупорного кирпича, называемой насадкой. Объем насадки (рис. 69) регенератора и поверхности ее нагрева определяются специальным теплотехническим расчетом.
Для кладки верхних рядов насадок используются термостойкий магнезитохромитовый или форстеритовый (2MgO-SiO2) кирпичи. Форстерит обладает высокой стойкостью против воздействия плавильной пыли. Нижние слои насадок, которые работают в менее тяжелых условиях, чем верхние слои (более низкое содержание пыли и температура 1000—1200 0C), выкладывают из шамотного кирпича.
Борова. Из поднасадочного пространства отходящие газы попадают в борова. Борова служат для подвода газа и воздуха к регенераторам и отвода продуктов сгорания от регенераторов к трубе или котлу-утилизатору. Их выкладывают из шамотного кирпича, снаружи облицованного обычным красным кирпичом.
Перекидные клапаны. Система перекидки клапанов (рис. 70) предназначена для изменения направления потоков газа и воздуха с одной стороны печи в другую. Для этого в боровах, газопроводах устанавливают перекидные и регулирующие устройства: газовые клапаны, воздушные клапаны, дымовые клапаны и воздушные задвйжки, переключение которых осуществляется специальными устройствами при помощи блоков. Операция перекидки клапанов в современных мартеновских печах автоматизирована.
Система охлаждения печей. Для увеличения стойкости кладки и защиты обслуживающего персонала от действия излучения в мартеновских печах предусмотрены системы водяного и испарительного охлаждения. Расход воды на охлаждение современных мартеновских печей составляет >400 м3/ч. Для уменьшения расхода воды водяное охлаждение некоторых элементбв печи заменяют испарительным. Водяное охлаждение применяют только для рам рабочих окон и арматуры регулирующих клапанов.
Испарительное охлаждение используется в кессонах газовых пролетов головок и некоторых элементов клад-
Рис. 70. Схема перекидных устройств мартеновской печи;
I — воздушные клапаны; 2— воздушные задвижки; 3 — газовые клапаны; 4 — дымовые клапаны
Ки печи. Сущность испарительного охлаждения заключается в использовании вместо технической химически очищенной воды, которую можно нагревать до IOO0C и выше без образования отложения солей и накипи. При этом резко сокращается потребность в охлаждающей воде (в 30—100 раз), отпадает необходимость строительства охлаждающих сооружений (градирен и др.). При испарительном охлаждении от охлаждаемого элемента печи отводится как тепло, необходимое на нагревание воды до кипения, так и скрытая теплота парообразова — /
Ния. Дополнительный эффект получается благодаря улучшению условий теплопередачи (кипящая вода обладает более^высоким коэффициентом теплопередачи).